Texas Examinations of Educator Standards™ (TExES™) Program

Preparation Manual

Mathematics/Science 4–8 (114)
Table of Contents

Table of Contents ... 2
About The Test .. 4
The Domains .. 5
The Standards ... 6
Domains and Competencies .. 8
 Domain I — Number Concepts ... 8
 Domain II — Patterns and Algebra ... 10
 Domain III — Geometry and Measurement 12
 Domain IV — Probability and Statistics 14
 Domain V — Mathematical Processes and Perspectives 15
 Domain VI — Mathematical Learning, Instruction and Assessment 17
 Domain VII — Scientific Inquiry and Processes 19
 Domain VIII — Physical Science ... 21
 Domain IX — Life Science ... 24
 Domain X — Earth and Space Science 26
 Domain XI — Science Learning, Instruction and Assessment 28
Approaches to Answering Multiple-Choice Questions 30
 How to Approach Unfamiliar Question Formats 30
 Question Formats ... 32
 Single Questions ... 32
 Clustered Questions .. 35
Multiple-Choice Practice Questions ... 40
Answer Key and Rationales ... 60
Study Plan Sheet .. 80

NOTE: After clicking on a link, right click and select “Previous View” to go back to original text.
About The Test

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Mathematics/Science 4–8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Code</td>
<td>114</td>
</tr>
<tr>
<td>Time</td>
<td>5 hours</td>
</tr>
<tr>
<td>Number of Questions</td>
<td>120 multiple-choice questions</td>
</tr>
<tr>
<td>Format</td>
<td>Computer-administered test (CAT)</td>
</tr>
</tbody>
</table>

The TExES Mathematics/Science 4–8 (114) test is designed to assess whether a test taker has the requisite knowledge and skills that an entry-level educator in this field in Texas public schools must possess. The 120 multiple-choice questions are based on the Mathematics/Science 4–8 test framework and cover grades 4–8. The test may contain questions that do not count toward the score. Your final scaled score will be based only on scored questions.

NOTE: After clicking on a link, right click and select "Previous View" to go back to original text.
The Domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>Domain Title</th>
<th>Approx. Percentage of Test</th>
<th>Standards Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Number Concepts</td>
<td>8%</td>
<td>Mathematics I</td>
</tr>
<tr>
<td>II.</td>
<td>Patterns and Algebra</td>
<td>11%</td>
<td>Mathematics II</td>
</tr>
<tr>
<td>III.</td>
<td>Geometry and Measurement</td>
<td>11%</td>
<td>Mathematics III</td>
</tr>
<tr>
<td>IV.</td>
<td>Probability and Statistics</td>
<td>8%</td>
<td>Mathematics IV</td>
</tr>
<tr>
<td>V.</td>
<td>Mathematical Processes and Perspectives</td>
<td>5%</td>
<td>Mathematics V–VI</td>
</tr>
<tr>
<td>VI.</td>
<td>Mathematical Learning, Instruction and Assessment</td>
<td>8%</td>
<td>Mathematics VII–VIII</td>
</tr>
<tr>
<td>VIII.</td>
<td>Physical Science</td>
<td>11%</td>
<td>Science VIII</td>
</tr>
<tr>
<td>IX.</td>
<td>Life Science</td>
<td>11%</td>
<td>Science IX</td>
</tr>
<tr>
<td>X.</td>
<td>Earth and Space Science</td>
<td>11%</td>
<td>Science X</td>
</tr>
<tr>
<td>XI.</td>
<td>Science Learning, Instruction and Assessment</td>
<td>6%</td>
<td>Science: III–V</td>
</tr>
</tbody>
</table>
The Standards

Mathematics Standard I
Number Concepts: The mathematics teacher understands and uses numbers, number systems and their structure, operations and algorithms, quantitative reasoning and technology appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) to prepare students to use mathematics.

Mathematics Standard II
Patterns and Algebra: The mathematics teacher understands and uses patterns, relations, functions, algebraic reasoning, analysis and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics Standard III
Geometry and Measurement: The mathematics teacher understands and uses geometry, spatial reasoning, measurement concepts and principles and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics Standard IV
Probability and Statistics: The mathematics teacher understands and uses probability and statistics, their applications and technology appropriate to teach the statewide curriculum (TEKS) to prepare students to use mathematics.

Mathematics Standard V
Mathematical Processes: The mathematics teacher understands and uses mathematical processes to reason mathematically, to solve mathematical problems, to make mathematical connections within and outside of mathematics and to communicate mathematically.

Mathematics Standard VI
Mathematical Perspectives: The mathematics teacher understands the historical development of mathematical ideas, the relationship between society and mathematics, the structure of mathematics and the evolving nature of mathematics and mathematical knowledge.

Mathematics Standard VII
Mathematical Learning and Instruction: The mathematics teacher understands how children learn and develop mathematical skills, procedures and concepts; knows typical errors students make; and uses this knowledge to plan, organize and implement instruction to meet curriculum goals and to teach all students to understand and use mathematics.

Mathematics Standard VIII
Mathematical Assessment: The mathematics teacher understands assessment, and uses a variety of formal and informal assessment techniques appropriate to the learner on an ongoing basis to monitor and guide instruction and to evaluate and report student progress.

NOTE: After clicking on a link, right click and select "Previous View" to go back to original text.
Science Standard I
The science teacher manages classroom, field and laboratory activities to ensure the safety of all students and the ethical care and treatment of organisms and specimens.

Science Standard II
The science teacher understands the correct use of tools, materials, equipment and technologies.

Science Standard III
The science teacher understands the process of scientific inquiry and its role in science instruction.

Science Standard IV
The science teacher has theoretical and practical knowledge about teaching science and about how students learn science.

Science Standard V
The science teacher knows the varied and appropriate assessments and assessment practices to monitor science learning.

Science Standard VI
The science teacher understands the history and nature of science.

Science Standard VII
The science teacher understands how science affects the daily lives of students and how science interacts with and influences personal and societal decisions.

Science Standard VIII
The science teacher knows and understands the science content appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) in physical science.

Science Standard IX
The science teacher knows and understands the science content appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) in life science.

Science Standard X
The science teacher knows and understands the science content appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) in Earth and space science.

Science Standard XI
The science teacher knows unifying concepts and processes that are common to all sciences.
Domains and Competencies

The content covered by this test is organized into broad areas of content called **domains**. Each domain covers one or more of the educator standards for this field. Within each domain, the content is further defined by a set of **competencies**. Each competency is composed of two major parts:

- The **competency statement**, which broadly defines what an entry-level educator in this field in Texas public schools should know and be able to do.
- The **descriptive statements**, which describe in greater detail the knowledge and skills eligible for testing.

Domain I — Number Concepts

Competency 001: *The teacher understands the structure of number systems, the development of a sense of quantity and the relationship between quantity and symbolic representations.*

The beginning teacher:

A. Analyzes the structure of numeration systems and the roles of place value and zero in the base ten system.

B. Understands the relative magnitude of whole numbers, integers, rational numbers and real numbers.

C. Demonstrates an understanding of a variety of models for representing numbers (e.g., fraction strips, diagrams, patterns, shaded regions, number lines).

D. Demonstrates an understanding of equivalency among different representations of rational numbers.

E. Selects appropriate representations of real numbers (e.g., fractions, decimals, percents, roots, exponents, scientific notation) for particular situations.

F. Understands the characteristics of the set of whole numbers, integers, rational numbers, real numbers and complex numbers (e.g., commutativity, order, closure, identity elements, inverse elements, density).

G. Demonstrates an understanding of how some situations that have no solution in one number system (e.g., whole numbers, integers, rational numbers) have solutions in another number system (e.g., real numbers, complex numbers).
Competency 002: The teacher understands number operations and computational algorithms.

The beginning teacher:

A. Works proficiently with real and complex numbers and their operations.
B. Analyzes and describes relationships between number properties, operations and algorithms for the four basic operations involving integers, rational numbers and real numbers.
C. Uses a variety of concrete and visual representations to demonstrate the connections between operations and algorithms.
D. Justifies procedures used in algorithms for the four basic operations with integers, rational numbers and real numbers and analyzes error patterns that may occur in their application.
E. Relates operations and algorithms involving numbers to algebraic procedures (e.g., adding fractions to adding rational expressions, division of integers to division of polynomials).
F. Extends and generalizes the operations on rationals and integers to include exponents, their properties and their applications to the real numbers.

Competency 003: The teacher understands ideas of number theory and uses numbers to model and solve problems within and outside of mathematics.

The beginning teacher:

A. Demonstrates an understanding of ideas from number theory (e.g., prime factorization, greatest common divisor) as they apply to whole numbers, integers and rational numbers and uses these ideas in problem situations.
B. Uses integers, rational numbers and real numbers to describe and quantify phenomena such as money, length, area, volume and density.
C. Applies knowledge of place value and other number properties to develop techniques of mental Mathematics/Science and computational estimation.
D. Applies knowledge of counting techniques such as permutations and combinations to quantify situations and solve problems.
E. Applies properties of the real numbers to solve a variety of theoretical and applied problems.
Domain II — Patterns and Algebra

Competency 004: The teacher understands and uses mathematical reasoning to identify, extend and analyze patterns and understands the relationships among variables, expressions, equations, inequalities, relations and functions.

The beginning teacher:

A. Uses inductive reasoning to identify, extend and create patterns using concrete models, figures, numbers and algebraic expressions.
B. Formulates implicit and explicit rules to describe and construct sequences verbally, numerically, graphically and symbolically.
C. Makes, tests, validates and uses conjectures about patterns and relationships in data presented in tables, sequences or graphs.
D. Gives appropriate justification of the manipulation of algebraic expressions.
E. Illustrates the concept of a function using concrete models, tables, graphs and symbolic and verbal representations.
F. Uses transformations to illustrate properties of functions and relations and to solve problems.

Competency 005: The teacher understands and uses linear functions to model and solve problems.

The beginning teacher:

A. Demonstrates an understanding of the concept of linear function using concrete models, tables, graphs and symbolic and verbal representations.
B. Demonstrates an understanding of the connections among linear functions, proportions and direct variation.
C. Determines the linear function that best models a set of data.
D. Analyzes the relationship between a linear equation and its graph.
E. Uses linear functions, inequalities and systems to model problems.
F. Uses a variety of representations and methods (e.g., numerical methods, tables, graphs, algebraic techniques) to solve systems of linear equations and inequalities.
G. Demonstrates an understanding of the characteristics of linear models and the advantages and disadvantages of using a linear model in a given situation.
Competency 006: The teacher understands and uses nonlinear functions and relations to model and solve problems.

The beginning teacher:

A. Uses a variety of methods to investigate the roots (real and complex), vertex and symmetry of a quadratic function or relation.
B. Demonstrates an understanding of the connections among geometric, graphic, numeric and symbolic representations of quadratic functions.
C. Analyzes data and represents and solves problems involving exponential growth and decay.
D. Demonstrates an understanding of the connections among proportions, inverse variation and rational functions.
E. Understands the effects of transformations such as $f(x + c)$ on the graph of a nonlinear function $f(x)$.
F. Applies properties, graphs and applications of nonlinear functions to analyze, model and solve problems.
G. Uses a variety of representations and methods (e.g., numerical methods, tables, graphs, algebraic techniques) to solve systems of quadratic equations and inequalities.
H. Understands how to use properties, graphs and applications of nonlinear relations including polynomial, rational, radical, absolute value, exponential, logarithmic, trigonometric and piecewise functions and relations to analyze, model and solve problems.

Competency 007: The teacher uses and understands the conceptual foundations of calculus related to topics in middle school mathematics.

The beginning teacher:

A. Relates topics in middle school mathematics to the concept of limit in sequences and series.
B. Relates the concept of average rate of change to the slope of the secant line and instantaneous rate of change to the slope of the tangent line.
C. Relates topics in middle school mathematics to the area under a curve.
D. Demonstrates an understanding of the use of calculus concepts to answer questions about rates of change, areas, volumes and properties of functions and their graphs.
Domain III — Geometry and Measurement

Competency 008: The teacher understands measurement as a process.

The beginning teacher:

A. Selects and uses appropriate units of measurement (e.g., temperature, money, mass, weight, area, capacity, density, percents, speed, acceleration) to quantify, compare and communicate information.

B. Develops, justifies and uses conversions within measurement systems.

C. Applies dimensional analysis to derive units and formulas in a variety of situations (e.g., rates of change of one variable with respect to another) and to find and evaluate solutions to problems.

D. Describes the precision of measurement and the effects of error on measurement.

E. Applies the Pythagorean theorem, proportional reasoning and right triangle trigonometry to solve measurement problems.

Competency 009: The teacher understands the geometric relationships and axiomatic structure of Euclidean geometry.

The beginning teacher:

A. Understands concepts and properties of points, lines, planes, angles, lengths and distances.

B. Analyzes and applies the properties of parallel and perpendicular lines.

C. Uses the properties of congruent triangles to explore geometric relationships and prove theorems.

D. Describes and justifies geometric constructions made using a compass and straight edge and other appropriate technologies.

E. Applies knowledge of the axiomatic structure of Euclidean geometry to justify and prove theorems.
Competency 010: *The teacher analyzes the properties of two- and three-dimensional figures.*

The beginning teacher:

A. Uses and understands the development of formulas to find lengths, perimeters, areas and volumes of basic geometric figures.

B. Applies relationships among similar figures, scale and proportion and analyzes how changes in scale affect area and volume measurements.

C. Uses a variety of representations (e.g., numeric, verbal, graphic, symbolic) to analyze and solve problems involving two- and three-dimensional figures such as circles, triangles, polygons, cylinders, prisms and spheres.

D. Analyzes the relationship among three-dimensional figures and related two-dimensional representations (e.g., projections, cross-sections, nets) and uses these representations to solve problems.

Competency 011: *The teacher understands transformational geometry and relates algebra to geometry and trigonometry using the Cartesian coordinate system.*

The beginning teacher:

A. Describes and justifies geometric constructions made using a reflection device and other appropriate technologies.

B. Uses translations, reflections, glide-reflections and rotations to demonstrate congruence and to explore the symmetries of figures.

C. Uses dilations (expansions and contractions) to illustrate similar figures and proportionality.

D. Uses symmetry to describe tessellations and shows how they can be used to illustrate geometric concepts, properties and relationships.

E. Applies concepts and properties of slope, midpoint, parallelism and distance in the coordinate plane to explore properties of geometric figures and solve problems.

F. Applies transformations in the coordinate plane.

G. Uses the unit circle in the coordinate plane to explore properties of trigonometric functions.
Domain IV — Probability and Statistics

Competency 012: The teacher understands how to use graphical and numerical techniques to explore data, characterize patterns and describe departures from patterns.

The beginning teacher:

A. Organizes and displays data in a variety of formats (e.g., tables, frequency distributions, stem-and-leaf plots, box-and-whisker plots, histograms, pie charts).
B. Applies concepts of center, spread, shape and skewness to describe a data distribution.
C. Supports arguments, makes predictions and draws conclusions using summary statistics and graphs to analyze and interpret one-variable data.
D. Demonstrates an understanding of measures of central tendency (e.g., mean, median, mode) and dispersion (e.g., range, interquartile range, variance, standard deviation).
E. Analyzes connections among concepts of center and spread, data clusters and gaps, data outliers and measures of central tendency and dispersion.
F. Calculates and interprets percentiles and quartiles.

Competency 013: The teacher understands the theory of probability.

The beginning teacher:

A. Explores concepts of probability through data collection, experiments and simulations.
B. Uses the concepts and principles of probability to describe the outcome of simple and compound events.
C. Generates, simulates and uses probability models to represent a situation.
D. Determines probabilities by constructing sample spaces to model situations.
E. Solves a variety of probability problems using combinations, permutations and geometric probability (i.e., probability as the ratio of two areas).
F. Uses the binominal, geometric and normal distributions to solve problems.
Competency 014: *The teacher understands the relationship among probability theory, sampling and statistical inference and how statistical inference is used in making and evaluating predictions.*

The beginning teacher:

A. Applies knowledge of designing, conducting, analyzing and interpreting statistical experiments to investigate real-world problems.

B. Demonstrates an understanding of random samples, sample statistics and the relationship between sample size and confidence intervals.

C. Applies knowledge of the use of probability to make observations and draw conclusions from single variable data and to describe the level of confidence in the conclusion.

D. Makes inferences about a population using binomial, normal and geometric distributions.

E. Demonstrates an understanding of the use of techniques such as scatter plots, regression lines, correlation coefficients and residual analysis to explore bivariate data and to make and evaluate predictions.

Domain V — Mathematical Processes and Perspectives

Competency 015: *The teacher understands mathematical reasoning and problem solving.*

The beginning teacher:

A. Demonstrates an understanding of proof, including indirect proof, in Mathematics/Science.

B. Applies correct mathematical reasoning to derive valid conclusions from a set of premises.

C. Demonstrates an understanding of the use of inductive reasoning to make conjectures and deductive methods to evaluate the validity of conjectures.

D. Applies knowledge of the use of formal and informal reasoning to explore, investigate and justify mathematical ideas.

E. Recognizes that a mathematical problem can be solved in a variety of ways and selects an appropriate strategy for a given problem.

F. Evaluates the reasonableness of a solution to a given problem.

G. Applies content knowledge to develop a mathematical model of a real-world situation and analyzes and evaluates how well the model represents the situation.

H. Demonstrates an understanding of estimation and evaluates its appropriate uses.
Competency 016: *The teacher understands mathematical connections within and outside of mathematics and how to communicate mathematical ideas and concepts.*

The beginning teacher:

A. Recognizes and uses multiple representations of a mathematical concept (e.g., a point and its coordinates, the area of circle as a quadratic function in r, probability as the ratio of two areas).

B. Uses mathematics to model and solve problems in other disciplines, such as art, music, science, social science and business.

C. Expresses mathematical statements using developmentally appropriate language, standard English, mathematical language and symbolic Mathematics/Science.

D. Communicates mathematical ideas using a variety of representations (e.g., numeric, verbal, graphic, pictorial, symbolic, concrete).

E. Demonstrates an understanding of the use of visual media such as graphs, tables, diagrams and animations to communicate mathematical information.

F. Uses the language of mathematics as a precise means of expressing mathematical ideas.

G. Understands the structural properties common to the mathematical disciplines.

H. Explores and applies concepts of financial literacy as it relates to teaching students (e.g., describe the basic purpose of financial institutions, distinguish the difference between gross income and net income, identify various savings options, define different types of taxes, identify the advantages and disadvantages of different methods of payments).

I. Applies mathematics to model and solve problems to manage financial resources effectively for lifetime financial security as it relates to teaching students (e.g., distinguish between fixed and variable expenses, calculate profit in a given situation develop a system for keeping and using financial records, describe actions that might be taken to balance a budget when expenses exceed income and balance a simple budget.)
Domain VI — Mathematical Learning, Instruction and Assessment

Competency 017: The teacher understands how children learn and develop mathematical skills, procedures and concepts.

The beginning teacher:

A. Applies theories and principles of learning mathematics to plan appropriate instructional activities for all students.
B. Understands how students differ in their approaches to learning mathematics with regard to diversity.
C. Uses students’ prior mathematical knowledge to build conceptual links to new knowledge and plans instruction that builds on students’ strengths and addresses students’ needs.
D. Understands how learning may be assisted through the use of mathematics manipulatives and technological tools.
E. Understands how to motivate students and actively engage them in the learning process by using a variety of interesting, challenging and worthwhile mathematical tasks in individual, small-group and large-group settings.
F. Understands how to provide instruction along a continuum from concrete to abstract.
G. Recognizes the implications of current trends and research in mathematics and mathematics education.

Competency 018: The teacher understands how to plan, organize and implement instruction using knowledge of students, subject matter and statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) to teach all students to use mathematics.

The beginning teacher:

A. Demonstrates an understanding of a variety of instructional methods, tools and tasks that promote students’ ability to do Mathematics/Science described in the TEKS.
B. Understands planning strategies for developing mathematical instruction as a discipline of interconnected concepts and procedures.
C. Develops clear learning goals to plan, deliver, assess and reevaluate instruction based on the TEKS.
D. Understands procedures for developing instruction that establishes transitions between concrete, symbolic and abstract representations of mathematical knowledge.
E. Applies knowledge of a variety of instructional delivery methods, such as individual, structured small-group and large-group formats.

F. Understands how to create a learning environment that provides all students, including English-language learners, with opportunities to develop and improve mathematical skills and procedures.

G. Demonstrates an understanding of a variety of questioning strategies to encourage mathematical discourse and to help students analyze and evaluate their mathematical thinking.

H. Understands how technological tools and manipulatives can be used appropriately to assist students in developing, comprehending and applying mathematical concepts.

I. Understands how to relate mathematics to students’ lives and a variety of careers and professions.

Competency 019: The teacher understands assessment and uses a variety of formal and informal assessment techniques to monitor and guide mathematics instruction and to evaluate student progress.

The beginning teacher:

A. Demonstrates an understanding of the purpose, characteristics and uses of various assessments in mathematics, including formative and summative assessments.

B. Understands how to select and develop assessments that are consistent with what is taught and how it is taught.

C. Demonstrates an understanding of how to develop a variety of assessments and scoring procedures consisting of worthwhile tasks that assess mathematical understanding, common misconceptions and error patterns.

D. Understands how to evaluate a variety of assessment methods and materials for reliability, validity, absence of bias, clarity of language and appropriateness of mathematical level.

E. Understands the relationship between assessment and instruction and knows how to evaluate assessment results to design, monitor and modify instruction to improve mathematical learning for all students, including English-language learners.
Domain VII — Scientific Inquiry and Processes

Competency 020: The teacher understands how to manage learning activities to ensure the safety of all students.

The beginning teacher:

A. Understands safety regulations and guidelines for science facilities and science instruction.
B. Knows procedures for and sources of information regarding the appropriate handling, use, conservation, disposal, recycling, care and maintenance of chemicals, materials, specimens and equipment.
C. Knows procedures for the safe handling and ethical care and treatment of organisms and specimens.

Competency 021: The teacher understands the correct use of tools, materials, equipment and technologies.

The beginning teacher:

A. Selects and safely uses appropriate tools, technologies, materials and equipment needed for instructional activities.
B. Understands concepts of precision, accuracy and error with regard to reading and recording numerical data from a scientific instrument.
C. Understands how to gather, organize, display and communicate data in a variety of ways (e.g., construct charts, tables, graphs, maps, satellite images, diagrams, written reports, oral presentations).
D. Understands the international system of measurement (i.e., metric system) and performs unit conversions within measurement systems.

Competency 022: The teacher understands the process of scientific inquiry and the history and nature of science.

The beginning teacher:

A. Understands the characteristics of various types of scientific investigations (e.g., descriptive studies, controlled experiments, comparative data analysis).
B. Understands how to design, conduct and communicate the results of a variety of scientific investigations.
C. Understands the historical development of science and the contributions that diverse cultures and individuals of both genders have made to scientific knowledge.
D. Understands the roles that logical reasoning, verifiable empirical evidence, prediction and peer review play in the process of generating and evaluating scientific knowledge.

E. Understands principles of scientific ethics.

F. Develops, analyzes and evaluates different explanations for a given scientific result.

G. Demonstrates an understanding of potential sources of error in inquiry-based investigation and the use of multiple trials to increase reliability.

H. Demonstrates an understanding of how to communicate and defend the results of an inquiry-based investigation.

Competency 023: The teacher understands how science impacts the daily lives of students and interacts with and influences personal and societal decisions.

The beginning teacher:

A. Understands that decisions about the use of science are based on factors such as ethical standards, economics and personal and societal needs.

B. Applies scientific principles and the theory of probability to analyze the advantages of, disadvantages of or alternatives to a given decision or course of action.

C. Applies scientific principles and processes to analyze factors that influence personal choices concerning fitness and health, including physiological and psychological effects and risks associated with the use of substances and substance abuse.

D. Understands concepts, characteristics and issues related to changes in populations and human population growth.

E. Understands the types and uses of natural resources (renewable, non-renewable) and the effects of human consumption on the renewal and depletion of resources.

F. Understands the role science can play in helping resolve personal, societal and global challenges (e.g., recycling, evaluating product claims, alternative energy sources).
Competency 024: The teacher knows and understands the unifying concepts and processes that are common to all sciences.

The beginning teacher:

A. Understands how the following concepts and processes provide a unifying explanatory framework across the science disciplines: systems, order and organization; evidence, models and explanation; change, constancy and measurements; evolution and equilibrium; and form and function.

B. Demonstrates an understanding of how patterns in observations and data can be used to make explanations and predictions.

C. Analyses interactions and interrelationships between systems and subsystems.

D. Applies unifying concepts to explore similarities in a variety of natural phenomena.

E. Understands how properties and patterns of systems can be described in terms of space, time, energy and matter.

F. Understands how change and constancy occur in systems.

G. Understands the complementary nature of form and function in a given system.

H. Understands how models are used to represent the natural world and how to evaluate the strengths and limitations of a variety of scientific models (e.g., physical, conceptual, mathematical).

Domain VIII — Physical Science

Competency 025: The teacher understands forces and motion and their relationships.

The beginning teacher:

A. Demonstrates an understanding of properties of universal forces (e.g., gravitational, electrical, magnetic).

B. Understands how to measure, graph and describe changes in motion using concepts of displacement, speed, velocity and acceleration.

C. Understands the vector nature of force.

D. Identifies the forces acting on an object and applies Newton’s laws to describe the motion of an object.

E. Analyses the relationship between force and motion in a variety of situations (e.g., simple machines, blood flow, geologic processes).
Competency 026: The teacher understands physical properties of and changes in matter.

The beginning teacher:

A. Describes the physical properties of substances (e.g., density, boiling point, melting point, solubility, thermal and electrical conductivity, luster, malleability).
B. Describes the physical properties and molecular structure of solids, liquids and gases.
C. Describes the relationship between the molecular structure of materials (e.g., metals, crystals, polymers) and their physical properties.
D. Relates the physical properties of an element to its placement in the periodic table, including metals, non-metals and metalloids.
E. Distinguishes between physical and chemical changes in matter.
F. Applies knowledge of physical properties of and changes in matter to processes and situations that occur in life and Earth/space science.

Competency 027: The teacher understands chemical properties of and changes in matter.

The beginning teacher:

A. Describes the structure and components of the atom.
B. Distinguishes among elements, compounds, mixtures and solutions and describes their properties.
C. Relates the chemical properties of an element to its placement in the periodic table.
D. Describes chemical bonds and chemical formulas.
E. Analyzes chemical reactions and their associated chemical equations.
F. Explains the importance of a variety of chemical reactions that occur in daily life (e.g., rusting, burning of fossil fuels, photosynthesis, cell respiration, chemical batteries, digestion of food).
G. Understands applications of chemical properties of matter in physical, life and Earth/space science and technology (e.g., materials science, biochemistry, transportation, medicine, telecommunications).
Competency 028: The teacher understands energy and interactions between matter and energy.

The beginning teacher:

A. Describes concepts of work, power and potential and kinetic energy.
B. Understands the concept of heat energy and the difference between heat and temperature.
C. Understands the principles of electricity and magnetism and their applications (e.g., electric circuits, motors, audio speakers, nerve impulses, lightning).
D. Applies knowledge of properties of light (e.g., reflection, refraction, dispersion) to describe the function of optical systems and phenomena (e.g., camera, microscope, rainbow, eye).
E. Demonstrates an understanding of the properties, production and transmission of sound.
F. Applies knowledge of properties and characteristics of waves (e.g., wavelength, frequency, interference) to describe a variety of waves (e.g., water, electromagnetic, sound).

Competency 029: The teacher understands energy transformations and the conservation of matter and energy.

The beginning teacher:

A. Describes the processes that generate energy in the sun and other stars.
B. Applies the law of conservation of matter to analyze a variety of situations (e.g., the water cycle, food chains, decomposition, balancing chemical equations).
C. Describes sources of electrical energy and processes of energy transformation for human uses (e.g., fossil fuels, solar panels, hydroelectric plants).
D. Understands exothermic and endothermic chemical reactions and their applications (e.g., hot and cold packs, energy content of food).
E. Applies knowledge of the transfer of energy in a variety of situations (e.g., the production of heat, light, sound and magnetic effects by electrical energy; the process of photosynthesis; weather processes; food webs; food/energy pyramids).
F. Applies the law of conservation of energy to analyze a variety of physical phenomena (e.g., specific heat, nuclear reactions, efficiency of simple machines, collisions).
G. Understands applications of energy transformations and the conservation of matter and energy in life and Earth/space science.
Domain IX — Life Science

Competency 030: The teacher understands the structure and function of living things.

The beginning teacher:

A. Describes characteristics of organisms from the major taxonomic groups, including domains and kingdoms and uses these characteristics to construct a dichotomous key.

B. Analyzes how structure complements function in cells.

C. Analyzes how structure complements function in tissues, organs, organ systems and organisms including both plants and animals.

D. Identifies human body systems and describes their functions (e.g., digestive, circulatory).

E. Describes how organisms, including producers, consumers and decomposers obtain and use energy and matter.

F. Applies chemical principles to describe the structure and function of the basic chemical components (e.g., proteins, carbohydrates, lipids, nucleic acids) of living things and distinguishes between organic and inorganic compounds.

Competency 031: The teacher understands reproduction and the mechanisms of heredity.

The beginning teacher:

A. Compares and contrasts sexual and asexual reproduction.

B. Understands the organization of hereditary material (e.g., DNA, genes, chromosomes).

C. Describes how an inherited trait can be determined by one or many genes and how more than one trait can be influenced by a single gene.

D. Distinguishes between dominant and recessive traits and predicts the probable outcomes of genetic combinations.

E. Evaluates the influence of environmental and genetic factors on the traits of an organism.

F. Describes current applications of genetic research (e.g., related to cloning, reproduction, health, industry, agriculture).
Competency 032: The teacher understands adaptations of organisms and the theory of evolution.

The beginning teacher:

A. Describes similarities and differences among various types of organisms and methods of classifying organisms (e.g., presence of a nucleus determines if a cell is prokaryotic and eukaryotic).
B. Describes traits in a population or species that enhance its survival and reproductive success.
C. Describes how populations and species change through time.
D. Applies knowledge of the mechanisms and processes of biological evolution (e.g., variation, mutation, environmental factors, natural selection).
E. Describes evidence that supports the theory of evolution of life on Earth.

Competency 033: The teacher understands regulatory mechanisms and behavior.

The beginning teacher:

A. Describes how organisms respond to internal and external stimuli.
B. Applies knowledge of structures and physiological processes that maintain stable internal conditions.
C. Demonstrates an understanding of feedback mechanisms that allow organisms to maintain stable internal conditions.
D. Understands how evolutionary history affects behavior.

Competency 034: The teacher understands the relationships between organisms and the environment.

The beginning teacher:

A. Understands the levels of organization within an ecosystem (organism, population, community) and identifies the abiotic and biotic components of an ecosystem.
B. Analyzes the interrelationships (food chains, food webs) among producers, consumers, and decomposers in an ecosystem.
C. Identifies factors that influence the size and growth of populations in an ecosystem.
D. Analyzes adaptive characteristics that result in a population’s or species’ unique niche in an ecosystem.
E. Describes and analyzes energy flow through various types of ecosystems.
F. Knows how populations and species modify and affect ecosystems (e.g., succession), and how biodiversity affects the sustainability of ecosystems.

Domain X — Earth and Space Science

Competency 035: The teacher understands the structure and function of earth systems.

The beginning teacher:

A. Understands the layers and surface features (landforms) of Earth and uses topographic maps and satellite imaging to analyze constructive and destructive processes that produce geologic change.
B. Understands the form and function of surface and subsurface water (e.g., watershed, aquifer).
C. Applies knowledge of the composition and structure of the atmosphere and its properties, including characteristics that allow life to exist.
D. Demonstrates an understanding of the interactions that occur among the biosphere, geosphere, hydrosphere and atmosphere.
E. Applies knowledge of how human activity and natural processes, both gradual and catastrophic, can alter earth and ocean systems.
F. Identifies the sources of energy (e.g., solar, geothermal, wind, hydroelectric, biofuels) in earth systems and describes mechanisms of energy transfer (e.g., conduction, convection, radiation).

Competency 036: The teacher understands cycles in earth systems.

The beginning teacher:

A. Understands the rock cycle and how rocks, minerals, fossil fuels and soils are formed.
B. Understands the water cycle and its relationship to weather processes; how the sun and the ocean interact in the water cycle.
C. Understands the nutrient (e.g., carbon, nitrogen) cycle and its relationship to earth systems.
D. Applies knowledge of how human and natural processes affect Earth systems.
E. Understands the dynamic interactions that occur among the various cycles in the biosphere, geosphere, hydrosphere and atmosphere.
Competency 037: *The teacher understands the role of energy in weather and climate.*

The beginning teacher:

A. Understands the elements of weather (e.g., humidity, wind speed, pressure, temperature) and how they are measured.
B. Compares and contrasts weather and climate.
C. Analyzes weather charts and data to make weather predictions based on local and global patterns.
D. Applies knowledge of how transfers of energy among earth systems affect weather and climate.
E. Analyzes how Earth’s position, orientation and surface features affect weather and climate.

Competency 038: *The teacher understands the characteristics of the solar system and the universe.*

The beginning teacher:

A. Understands the properties and characteristics of celestial objects.
B. Applies knowledge of the Earth-moon-sun system and the interactions among them (e.g., seasons, lunar phases, eclipses).
C. Identifies properties of the components of the solar system, including systems that allow life to exist.
D. Recognizes characteristics of stars, nebulae and galaxies and their distribution in the universe.
E. Demonstrates an understanding of scientific theories of the origin of the universe.

Competency 039: *The teacher understands the history of the Earth system.*

The beginning teacher:

A. Understands the scope of the geologic time scale and its relationship to geologic processes.
B. Demonstrates an understanding of theories about the earth’s origin and geologic history.
C. Demonstrates an understanding of how tectonic forces have shaped landforms over time.
D. Understands the formation of fossils and the importance of the fossil record in explaining the Earth’s history.

Domain XI — Science Learning, Instruction and Assessment

Competency 040: *The teacher has theoretical and practical knowledge about teaching science and about how students learn science.*

The beginning teacher:

A. Understands how the developmental characteristics, prior knowledge and experience and attitudes of students influence science learning.

B. Selects and adapts science curricula, content, instructional materials and activities to meet the interests, knowledge, understanding, abilities, experiences and needs of all students, including English-language learners.

C. Understands how to use situations from students’ daily lives to develop instructional materials that investigate how science can be used to make informed decisions.

D. Understands common misconceptions in science and effective ways to address these misconceptions.

E. Understands the rationale for the use of active learning and inquiry processes for students.

F. Understands questioning strategies designed to elicit higher-level thinking and how to use them to move students from concrete to more abstract understanding.

G. Understands the importance of planning activities that are inclusive and accommodate the needs of all students.

H. Understands how to sequence learning activities in a way that allows students to build upon their prior knowledge and challenges them to expand their understanding of science.

Competency 041: *The teacher understands the process of scientific inquiry and its role in science instruction.*

The beginning teacher:

A. Plans and implements instruction that provides opportunities for all students to engage in nonexperimental and experimental inquiry investigations.

B. Focuses inquiry-based instruction on questions and issues relevant to students and uses strategies to assist students with generating, refining and focusing scientific questions and hypotheses.
C. Instructs students in the safe and proper use of a variety of grade-appropriate tools, equipment, resources, technology and techniques to access, gather, store, retrieve, organize and analyze data.

D. Knows how to guide and manage students in making systematic observations and measurements.

E. Knows how to promote the use of critical-thinking skills, logical reasoning and scientific problem solving to reach conclusions based on evidence.

F. Knows how to teach students to develop, analyze and evaluate different explanations for a given scientific result.

G. Knows how to teach students to demonstrate an understanding of potential sources of error in inquiry-based investigation.

H. Knows how to teach students to demonstrate an understanding of how to communicate and defend the results of an inquiry-based investigation.

Competency 042: The teacher knows the varied and appropriate assessments and assessment practices to monitor science learning in laboratory, field and classroom settings.

The beginning teacher:

A. Understands the relationships among science curriculum, assessment and instruction and bases instruction on information gathered through assessment of students’ strengths and needs.

B. Understands the importance of monitoring and assessing students’ understanding of science concepts and skills on an ongoing basis.

C. Understands the importance of carefully selecting or designing formative and summative assessments for the specific decisions they are intended to inform.

D. Selects or designs and administers a variety of appropriate assessment methods (e.g., performance assessment, self-assessment, formal/informal, formative/summative) to monitor student understanding and progress.

E. Uses formal and informal assessments of student performance and products (e.g., projects, lab journals, rubrics, portfolios, student profiles, checklists) to evaluate student participation in and understanding of the inquiry process.

F. Understands the importance of sharing evaluation criteria and assessment results with students.
Approaches to Answering Multiple-Choice Questions

The purpose of this section is to describe multiple-choice question formats that you will typically see on the Mathematics/Science 4–8 test and to suggest possible ways to approach thinking about and answering them. These approaches are intended to supplement and complement familiar test-taking strategies with which you may already be comfortable and that work for you. Fundamentally, the most important component in assuring your success on the test is knowing the content described in the test framework. This content has been carefully selected to align with the knowledge required to begin a career as a Mathematics/Science 4–8 teacher.

The multiple-choice questions on this test are designed to assess your knowledge of the content described in the test framework. In most cases, you are expected to demonstrate more than just your ability to recall factual information. You may be asked to think critically about the information, to analyze it, consider it carefully, and compare it with other knowledge you have or make a judgment about it.

Leave no questions unanswered. Questions for which you mark no answer are counted as incorrect. Your score will be determined by the number of questions you answer correctly.

The Mathematics/Science 4–8 test is designed to include a total of 120 multiple-choice questions. Your final scaled score will be based only on scored questions. The questions that are not scored are being pilot tested to collect information about how these questions will perform under actual testing conditions. These pilot questions are not identified on the test.

NOTE: The Definitions and Formulas, Periodic Table of the Elements and scientific calculator are provided on-screen for this exam. Copies of the reference materials can be found in this preparation manual. Refer to the examination’s information page on the Texas Educator Certification Examination Program website for information on how to access and use the on-screen calculator.

How to Approach Unfamiliar Question Formats

Some questions include introductory information such as a table, graph or reading passage (often called a stimulus) that provides the information the question asks for. New formats for presenting information are developed from time to time. Tests may include audio and video stimulus materials such as a movie clip or some kind of animation, instead of a map or reading passage.

NOTE: After clicking on a link, right click and select "Previous View" to go back to original text.
Tests may also include interactive types of questions. These questions take advantage of technology to assess knowledge and skills that go beyond what can be assessed using standard single-selection multiple-choice questions. If you see a format you are not familiar with, read the directions carefully. The directions always give clear instructions on how you are expected to respond. For most questions, you will respond by clicking an oval to choose a single answer choice from a list of options. Other questions may ask you to respond by:

- **Selecting all that apply.** In some questions, you will be asked to choose all the options that answer the question correctly.
- **Typing in an entry box.** You may be asked to enter a text or numeric answer. Some questions may have more than one place to enter a response.
- **Clicking check boxes.** You may be asked to click check boxes instead of an oval when more than one choice within a set of answers can be selected.
- **Clicking parts of a graphic.** In some questions, you will choose your answer by clicking on location(s) on a graphic such as a map or chart, as opposed to choosing from a list.
- **Clicking on sentences.** In questions with reading passages, you may be asked to choose your answer by clicking on a sentence or sentences within the reading passage.
- **Dragging and dropping answer choices into “targets” on the screen.** You may be asked to choose an answer from a list and drag it into the appropriate location in a table, paragraph of text or graphic.
- **Selecting options from a drop-down menu.** This type of question will ask you to select the appropriate answer or answers by selecting options from a drop-down menu (e.g., to complete a sentence).

Remember that with every question, you will get clear instructions on how to respond.
Question Formats

You may see the following types of multiple-choice questions on the test:

— Single Questions
— Clustered Questions

On the following pages, you will find descriptions of these commonly used question formats, along with suggested approaches for responding to each type.

Single Questions

The single-question format presents a direct question or an incomplete statement. It can also include a reading passage, graphic, table or a combination of these. Four or more answer options appear below the question.

The following question is an example of the single-question format; it tests knowledge of Mathematics/Science 4–8 Competency 010: The teacher analyzes the properties of two- and three-dimensional figures.

Example 1

1. The Great Pyramid at Giza is approximately 150 meters high and has a square base approximately 230 meters on a side. What is the approximate area of a horizontal cross section of the pyramid taken 50 meters above its base?

 A. 5,880 square meters
 B. 11,760 square meters
 C. 23,510 square meters
 D. 35,270 square meters

Suggested Approach

Read the question carefully and critically. Think about what it is asking and the situation it is describing. Eliminate any obviously wrong answers, select the correct answer choice and mark your answer.

The horizontal cross section will be a square in the plane parallel to the base of the pyramid and 50 meters above it. In order to estimate the area of the cross section, you will need to know the approximate length of one of its sides. This can be calculated using your knowledge of proportions and the properties of similar geometric figures. In solving problems that involve geometry, drawing a diagram is often helpful.
The figure shows a vertical cross section through the center of the square base of the pyramid perpendicular to a side of the base. The measurements given in the test question have been transferred to the diagram. Notice that since \(CG + GF = 150 \), and it is given that \(GF = 50 \), then \(CG = 100 \). You must find \(BD \), the length of the sides of the square cross section. Also note that triangle \(CBD \) and triangle \(CAE \) are similar because they have two angles whose measures are equal; they share \(\angle B \) and the measure of \(\angle B \) is equal to the measure of \(\angle A \) since they are corresponding angles formed by a transversal and two parallel lines. Because the two triangles are similar, their altitudes and sides must be proportional and you can write: \(\frac{CG}{CF} = \frac{BD}{AE} \). Now substitute the values for the lengths of the line segments to get \(\frac{100}{150} = \frac{BD}{230} \). Solving this gives \(BD = 153.33 \). Since the horizontal cross section is a square, its area is the square of the length of \(BD \), or \((153.33)^2 = 23,511.11\) square meters. Now look at the response options. The correct response is option C, rounded to the nearest ten square meters.

Setting up the proportion incorrectly as \(\frac{50}{150} = \frac{BD}{230} \) and using this value for the side of the cross section leads to option A. Option B results from assuming that the cross section is an isosceles right triangle instead of a square, and option D comes from assuming that the area of the cross section is \(\frac{100}{150} = \frac{2}{3} \) of the area of the base of the pyramid.
Example 2

Use the diagram below to answer the question that follows.

2. On a class field trip, students encounter some brightly colored shelf-like structures attached to the trunk of a dead tree. Which of the following is the best description of how this organism obtains matter and energy from its environment?

A. It obtains energy from the dead wood and absorbs carbon dioxide and water vapor from the air
B. It obtains energy from the sunlight, absorbs carbon from the dead wood and obtains water vapor from the air
C. It obtains energy from sunlight and obtains carbon and water from the dead wood
D. It obtains energy, carbon and water from the dead wood

Suggested Approach

Read the question carefully and critically. Think about what it is asking and the situation it is describing. Eliminate any obviously wrong answers, select the correct answer choice and mark your answer.

As you read this question, it should be clear from the diagram that the shelf-like structures are fungi. Think about the characteristics that distinguish fungi from other organisms. One important difference is how fungi obtain energy and nutrients. Unlike plants, fungi lack chlorophyll and do not photosynthesize, obtaining all their energy and nutrients from the absorption of organic matter.

Now look at the response options. The correct response is option D. All other options refer to some part of the photosynthetic cycle and therefore do not pertain to fungi.
Clustered Questions

Clustered questions are made up of a stimulus and two or more questions relating to the stimulus. The stimulus material can be a reading passage, a graphic, a table, a description of an experiment or any other information necessary to answer the questions that follow.

You can use several different approaches to respond to clustered questions. Some commonly used strategies are listed below.

Strategy 1
Skim the stimulus material to understand its purpose, its arrangement and/or its content. Then read the questions and refer again to the stimulus material to obtain the specific information you need to answer the questions.

Strategy 2
Read the questions *before* considering the stimulus material. The theory behind this strategy is that the content of the questions will help you identify the purpose of the stimulus material and locate the information you need to answer the questions.

Strategy 3
Use a combination of both strategies. Apply the “read the stimulus first” strategy with shorter, more familiar stimuli and the “read the questions first” strategy with longer, more complex or less familiar stimuli. You can experiment with the sample questions in this manual and then use the strategy with which you are most comfortable when you take the actual test.

Whether you read the stimulus before or after you read the questions, you should read it carefully and critically. You may want to note its important points to help you answer the questions.

As you consider questions set in educational contexts, try to enter into the identified teacher’s frame of mind and use that teacher’s point of view to answer the questions that accompany the stimulus. Be sure to consider the questions only in terms of the information provided in the stimulus — not in terms of your own experiences or individuals you may have known.
Example 1

First read the stimulus (a description of the concept being studied).

Use the diagram and the information below to answer the two questions that follow.

![Velocity-versus-time graph](image)

Students in a math class are investigating concepts related to motion in one dimension. The velocity-versus-time graph shows the velocity of a student walking in a straight line, collected at one-second intervals over a period of nine seconds.

Now you are prepared to address the first of the two questions associated with this stimulus. The first question measures Mathematics/Science 4–8 Competency 007: *The teacher uses and understands the conceptual foundations of calculus related to topics in middle school mathematics.*

1. Which of the following methods could be used to estimate the student’s acceleration between \(t = 3 \) and \(t = 5 \) seconds?

 A. Find the average of the velocities at \(t = 3 \) and \(t = 5 \) seconds
 B. Find the equation of the curve that best fits the data and evaluate it at \(t = 4 \) seconds
 C. Find the length of the line connecting the velocities between \(t = 3 \) and \(t = 5 \) seconds
 D. Find the slope of the line connecting the velocities at \(t = 3 \) and \(t = 5 \) seconds

Suggested Approach

You are asked to estimate the acceleration of the student between 3 and 5 seconds, that is, the average acceleration over this time period. Average acceleration is the rate of change of velocity with respect to time. Therefore, divide the difference in the velocities at 5 and 3 seconds by the total time elapsed, here 5–3=2 seconds. You should recognize this expression as representing the slope of a line connecting two points, or the difference in the \(y \)-coordinates divided by the difference in the \(x \)-coordinates. Therefore, **the correct response is option D**.
Option A finds the average velocity in the time interval, while option B finds an expression for velocity as a function of time and interpolates how fast the student is moving at $t = 4s$. Option C determines the length of the curve and has no physical significance.

Now you are ready to answer the second question. This question also measures Mathematics/Science 4–8 Competency 007: The teacher uses and understands the conceptual foundations of calculus related to topics in middle school mathematics.

2. Which of the following methods could be used to estimate the total distance the student has traveled between $t = 0$ and $t = 5$ seconds?

A. Find the median value of the velocities from $t = 0$ and $t = 5$ seconds, inclusive.
B. Find the ratio of the velocities at $t = 0$ and $t = 5$ seconds.
C. Find the area under the curve between $t = 0$ and $t = 5$ seconds.
D. Find the average value of the velocity-over-time ratios for $t = 0$ and $t = 5$ seconds.

Suggested Approach

In order to calculate the distance traveled by the student during a particular time interval, multiply the rate of travel by the length of time the student is moving; in other words, $d = rt$ where d represents distance, r represents rate (velocity), and t represents time. For example, during the interval from $t = 1$ to $t = 2$ seconds, multiply the average velocity during the interval, approximately $0.25 \frac{m}{s}$, by the length of the interval, $2 - 1 = 1$ second. This can be represented geometrically by the area of the rectangle of height $= 0.25 \frac{m}{s}$ and base $= 1$ under the curve between $t = 1$ second and $t = 2$ second. To get an estimate of the total distance traveled by the student, you need to sum the distance traveled during each of the one-second intervals from 0 through 5 seconds. This is approximately equal to the area under the curve from $t = 0$ to $t = 5$ seconds. Therefore, option C is the correct response.
Example 2

First read the stimulus (a diagram of a stratigraphic section of rock).

Read the passage below; then answer the two questions that follow.

Now you are prepared to address the first of the two questions associated with this stimulus. The first question tests measures Science 4–8 Competency 020: The teacher understands the history of the Earth system.

1. The igneous intrusion in the illustration has been dated to be 13 million years old, and the volcanic ash layer has been dated to be 24 million years old. Which of the following statements about the ages of fossil X and fossil Y is most accurate?

A. Fossil X is younger than fossil Y, and both fossils are older than 24 million years old
B. Fossil X and fossil Y are both between 13 million and 24 million years old
C. Fossil X is older than fossil Y, and both fossils are younger than 13 million years old
D. Fossil X is younger than 13 million years old, and fossil Y is older than 13 million years old
Suggested Approach

First examine the figure in the stimulus, noting the positions of the rock layers and the fossils labeled X and Y. You should be able to create a combined stratigraphy for the entire section by matching up the pattern of layers on either side of the igneous intrusion. Locate the fossils labeled X and Y and consider their relationship in the combined stratigraphy. It is clear that the two fossils are found in the same stratigraphic layer located above the 24-million-year-old volcanic ash. Since they are above the volcanic ash layer, they must be younger than 24 million years old. Since the igneous intrusion cut through the layer in which the fossils were located 13 million years ago, both fossils must be at least that old. Options A, C and D all state that one fossil is older than the other. Therefore, **the correct response is option B**.

Now you are ready to answer the second question. This question also measures Science 4–8 Competency 020: *The teacher understands the history of the Earth system*.

2. The discontinuity represented by the line labeled W in the illustration is most likely to be
 - A. a thrust fault.
 - B. an igneous intrusion.
 - C. a transverse fault.
 - D. an erosion surface.

Suggested Approach

The second question requires you to recognize the characteristics of an unconformity in a stratigraphic section. Note that the unconformity in the diagram cuts across several stratigraphic layers and the igneous intrusion and that these are missing above the unconformity. Options A, B and C all refer to faults or intrusions. Faults result in the displacement of layers relative to other layers, while intrusions are characterized by the insertion of igneous rock through or between layers. In this case, the relationship of the layers to one another and to the sandstone above the unconformity indicates that the unconformity is an erosion surface and that **option D is the correct response**.
Multiple-Choice Practice Questions

This section presents some sample test questions for you to review as part of your preparation for the test. To demonstrate how each competency may be assessed, each sample question is accompanied by the competency that it measures. While studying, you may wish to read the competency before and after you consider each sample question. Please note that the competency statements do not appear on the actual test.

For each sample test question, there is at least one correct answer and a rationale for each answer option. Please note that the sample questions are not necessarily presented in competency order.

The sample questions are included to illustrate the formats and types of questions you will see on the test; however, your performance on the sample questions should not be viewed as a predictor of your performance on the actual test.
Definitions and Formulas for Mathematics 4-8

Calculus

First Derivative: \(f'(x) = \frac{dy}{dx} \)

Second Derivative: \(f''(x) = \frac{d^2y}{dx^2} \)

Probability

\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
\[P(A \text{ and } B) = P(A)P(B|A) = P(B)P(A|B) \]

Algebra

\[i \]
\[i^2 = -1 \]
\[A^{-1} \text{ inverse of matrix } A \]
\[A = P\left(1 + \frac{r}{n}\right)^n \]

- **Compound interest:**
 - Where \(A \) is the final value
 - \(P \) is the principal
 - \(r \) is the interest rate
 - \(t \) is the term
 - \(n \) is the number of divisions within the term

\[[x] = n \]

- **Greatest integer function:**
 - Where \(n \) is the integer such that \(n \leq x < n + 1 \)

Geometry

- **Congruent Angles**

- **Congruent Sides**

- **Parallel Sides**

- **Circumference of a Circle**
 \(C = 2\pi r \)

Volume

- **Cylinder**
 \(\text{area of base} \times \text{height} \)

- **Cone**
 \(\frac{1}{3} \times \text{area of base} \times \text{height} \)

- **Sphere**
 \(\frac{4}{3} \pi r^3 \)

- **Prism**
 \(\text{area of base} \times \text{height} \)

Area

- **Triangle**
 \(\frac{1}{2} \times \text{base} \times \text{height} \)

- **Rhombus**
 \(\frac{1}{2} \times \text{diagonal}_1 \times \text{diagonal}_2 \)

- **Trapezoid**
 \(\frac{1}{2} \times \text{height} \times (\text{base}_1 + \text{base}_2) \)

- **Parallelogram**
 \(\text{base} \times \text{height} \)

- **Circle**
 \(\pi r^2 \)

Trigonometry

Law of Sines:
\[\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \]

Law of Cosines:
\[a^2 = b^2 + c^2 - 2bc \cos A \]
\[b^2 = a^2 + c^2 - 2ac \cos B \]
\[c^2 = a^2 + b^2 - 2ab \cos C \]

End of Definitions and Formulas
PERIODIC TABLE OF THE ELEMENTS

<table>
<thead>
<tr>
<th>1</th>
<th>8</th>
<th>16</th>
<th>24</th>
<th>32</th>
<th>40</th>
<th>48</th>
<th>56</th>
<th>64</th>
<th>72</th>
<th>80</th>
<th>88</th>
<th>96</th>
<th>104</th>
<th>112</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>Li</td>
<td>Be</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
</tr>
<tr>
<td>6.941</td>
<td>9.012</td>
<td>44.96</td>
<td>47.90</td>
<td>50.94</td>
<td>52.00</td>
<td>54.938</td>
<td>55.85</td>
<td>58.93</td>
<td>58.69</td>
<td>63.55</td>
<td>65.39</td>
<td>69.72</td>
<td>72.59</td>
<td>74.92</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
</tr>
<tr>
<td>39.10</td>
<td>40.08</td>
<td>44.96</td>
<td>47.90</td>
<td>50.94</td>
<td>52.00</td>
<td>54.938</td>
<td>55.85</td>
<td>58.93</td>
<td>58.69</td>
<td>63.55</td>
<td>65.39</td>
<td>69.72</td>
<td>72.59</td>
<td>74.92</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
</tr>
<tr>
<td>85.47</td>
<td>87.62</td>
<td>88.91</td>
<td>91.22</td>
<td>92.91</td>
<td>95.94</td>
<td>(98)</td>
<td>101.1</td>
<td>102.91</td>
<td>106.42</td>
<td>107.87</td>
<td>112.41</td>
<td>114.82</td>
<td>118.71</td>
<td>121.75</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
</tr>
<tr>
<td>132.91</td>
<td>137.33</td>
<td>138.91</td>
<td>178.49</td>
<td>180.95</td>
<td>183.85</td>
<td>186.21</td>
<td>190.2</td>
<td>192.2</td>
<td>195.08</td>
<td>196.97</td>
<td>200.59</td>
<td>204.38</td>
<td>207.2</td>
<td>208.98</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Rf</td>
<td>Db</td>
<td>Sg</td>
<td>Bh</td>
<td>Hs</td>
<td>Mt</td>
<td>Ds</td>
<td>Rg</td>
<td>§</td>
<td>*Lanthanide Series</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>223</td>
<td>226.02</td>
<td>227.03</td>
</tr>
<tr>
<td>†Actinide Series</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
</tr>
</tbody>
</table>

§Not yet named

*Lanthanide Series
†Actinide Series
COMPETENCY 009

Use the figure below to answer the question that follows.

![Figure with lines and angles]

1. In the figure above, lines ℓ and m are parallel, and the triangle containing $\angle 3$, $\angle 5$, and $\angle 6$ is not isosceles. Which of the following angles are congruent to $\angle 6$?

Select all that apply.

A. $\angle 1$
B. $\angle 2$
C. $\angle 3$
D. $\angle 4$
E. $\angle 5$
F. $\angle 7$

Answer and Rationale

COMPETENCY 001

2. Which of the following numbers are greater than π?

Select all that apply.

A. 3
B. 3.14
C. $\frac{22}{7}$
D. 3.142

Answer and Rationale
COMPETENCY 008

Use the formula below to answer the question that follows.

\[C = \frac{5}{9}(F - 32) \]

3. The formula above shows the relationship between \(C \) degrees Celsius and \(F \) degrees Fahrenheit. In an experiment, a certain chemical is to be kept in a temperature interval between 10\(^\circ\)C and 45\(^\circ\)C. What is this temperature interval in degrees Fahrenheit?

A. Between 8.4\(^\circ\)F and 15.4\(^\circ\)F
B. Between 10\(^\circ\)F and 45\(^\circ\)F
C. Between 50\(^\circ\)F and 113\(^\circ\)F
D. Between 75.6\(^\circ\)F and 138.6\(^\circ\)F

Answer and Rationale

COMPETENCY 018

4. An eighth-grade mathematics teacher notices that students are having difficulty understanding the difference between the mean and the median of a set of data. The teacher asks the students to find 10 different data sets from newspapers and Web sites. For each data set the students should calculate the mean and the median and write a paragraph explaining the data set and the significance of the mean and the median. With this activity the teacher demonstrates an understanding of the

A. procedures for developing instruction that establishes transitions between concrete, symbolic and abstract representations of mathematical knowledge.
B. use of visual media, such as graphs, tables, diagrams and animations, to communicate mathematical information.
C. structural properties common to the mathematical disciplines.
D. implications of current trends and research in mathematics and mathematics education.

Answer and Rationale
COMPETENCY 004

Use the student work below to answer the question that follows.

Solve for \(x \): \(x^2 - 8x = -15 \)

Step 1. \(x^2 - 8x + 15 = -15 + 15 \)
Step 2. \(x^2 - 8x + 15 = 0 \)
Step 3. \((x - 3)(x - 5) = 0 \)
Step 4. \(x - 3 = 0 \) or \(x - 5 = 0 \)
Step 5. \(x = 3 \) or \(x = 5 \)

5. Which of the following is the justification for step 4 in the student work above?

A. 0 is the identity element for addition.
B. \((a)(0) = 0\) for all real numbers \(a\).
C. Division by 0 is undefined.
D. The zero product property was used.

Answer and Rationale

COMPETENCY 003

6. Which of the following is the prime factorization of 900?

A. \((4)(9)(25) \)
B. \((16)(5)(11) \)
C. \((2^3)(3^3)(5^3) \)
D. \((2^2)(3^2)(5^2) \)

Answer and Rationale
COMPETENCY 005

7. The value of a car that Nakeshia purchased was $11,300. Assuming that the value of the car decreases by $900 every year, which of the following functions correctly models the value of the car, f, after x years?

A. $f(x) = 11,300x + 900$
B. $f(x) = 11,300x - 900$
C. $f(x) = 11,300 + 900x$
D. $f(x) = 11,300 - 900x$

Answer and Rationale

COMPETENCY 007

8. Ship A and ship B start sailing from the same harbor at the same time. Ship A is moving due north at a constant rate and has sailed a distance of $x(t)$, where t is the number of hours since the ships began moving. Ship B is moving due east at a constant rate and has sailed a distance of $y(t)$. The distance between the ships at time t is given by the function $f(t) = \sqrt{x(t)^2 + y(t)^2}$. Which of the following can be used to find the instantaneous rate of change of the distance between the two ships at time t?

A. $f'(t)$
B. $f''(t)$
C. $\frac{f(t) - f(0)}{t}$
D. $\int f(t)dt$

Answer and Rationale
COMPETENCY 011

9. An equilateral triangle has a perimeter of 24 centimeters. If the triangle is dilated by a factor of 1.5, what is the perimeter of the new triangle?

 A. 12 centimeters
 B. 16 centimeters
 C. 36 centimeters
 D. 108 centimeters

Answer and Rationale

COMPETENCY 012

Use the list below to answer the question that follows.

List \(L \): 64, 81, 96, 77, 93, 81, 71, 69

10. Which of the following statements is true about the numbers in list \(L \)?

 A. The mean of the numbers in list \(L \) is equal to the mode.
 B. The mean of the numbers in list \(L \) is greater than the mode.
 C. The mean of the numbers in list \(L \) is equal to the median.
 D. The mean of the numbers in list \(L \) is greater than the median.

Answer and Rationale
11. The spinner shown is in the shape of a circle divided into equal sections numbered 1, 2, 3, 4, 5, 6, 7, and 8. When the arrow on the spinner is spun, it is equally likely that the arrow will land in any of the 8 sections. If the arrow is spun three times, what is the probability that the arrow will land on 8 all three times?

A. \(\left(\frac{1}{8} \right) \left(\frac{1}{8} \right) \left(\frac{1}{8} \right) \)

B. \(\left(\frac{1}{8} \right) \left(\frac{1}{7} \right) \left(\frac{1}{6} \right) \)

C. \(\left(\frac{7}{8} \right) \left(\frac{7}{8} \right) \left(\frac{7}{8} \right) \)

D. \(\left(\frac{7}{8} \right) \left(\frac{6}{7} \right) \left(\frac{5}{6} \right) \)

Answer and Rationale
COMPETENCY 011

12. Which of the following represents the equation of a line in the xy-plane that is the reflection of the line $y = 4x - 1$ about the y-axis?

A. $y = 4x - 1$
B. $y = \frac{1}{4}x - 1$
C. $y = -4x - 1$
D. $y = -\frac{1}{4}x - 1$

Answer and Rationale

COMPETENCY 006

13. The initial population of a bacteria culture is 300. After 2 hours, the population doubles to 600, and after 4 hours, the population doubles again to 1200. Which of the following functions best models the population, P, of the bacteria as a function of time, t, in hours?

A. $P(t) = 300(2t)$
B. $P(t) = 300(2 + t)$
C. $P(t) = 300t^2$
D. $P(t) = 300(2)^\frac{t}{2}$

Answer and Rationale

NOTE: After clicking on a link, right click and select "Previous View" to go back to original text.
COMPETENCY 002

Use the equation below to answer the question that follows.

\[x^2 + x + 2 = 0 \]

14. Which of the following statements is true about the equation above?

A. The equation has no solutions.
B. The equation has two real solutions.
C. The equation has two complex solutions.
D. The equation has one real solution and one complex solution.

Answer and Rationale

COMPETENCY 014

15. A high school has a total of 1100 students. A student in a statistics class takes a random sample of 100 students and finds that 9 of the students sampled are taller than 6 feet. Based on this sample, which of the following is the best estimate of the number of students at the high school who are taller than 6 feet?

A. 1
B. 10
C. 100
D. 1000

Answer and Rationale
COMPETENCY 015

16. A mathematics teacher is conducting a lesson on mathematical modeling. The teacher asks the students to determine how long it would take to walk from Nome, Alaska, to Houston, Texas. By assigning this task, the teacher has asked the students to demonstrate

A. an understanding of proofs in mathematics.
B. an understanding of estimation and its appropriate uses.
C. an understanding of symbolic mathematics.
D. the use of manipulatives.

Answer and Rationale

COMPETENCY 010

17. Equilateral triangle ABC has sides of length 2. Equilateral triangle XYZ has sides of length 8. The area of triangle XYZ is how many times the area of triangle ABC?

A. 4
B. 8
C. 16
D. 64

Answer and Rationale

COMPETENCY 017

18. Students are using computer software that allows them to create compass and straightedge constructions on the computer. Which of the following is the best activity for the teacher to ask students to do using the software?

A. Finding the zeros of a polynomial
B. Finding the maximum and minimum values of differentiable functions
C. Finding the circle in the plane that passes through three noncollinear points
D. Finding the list of prime numbers greater than 1000 but less than 2000

Answer and Rationale
COMPETENCY 016

19. A teacher engages students in a discussion of prime and composite integers. The students are asked to discuss whether 1 is a prime number, whether negative integers can be called primes, and whether fractions can be called prime or composite numbers. The teacher most likely designed this activity to address which of the following objectives?

A. Demonstrating the use of multiple representations of mathematical concepts
B. Demonstrating the use of formative and summative assessments
C. Demonstrating how abstract mathematical concepts relate to a variety of careers and professions
D. Demonstrating the use of mathematical terminology as a precise means of expressing mathematical ideas

Answer and Rationale

COMPETENCY 019

20. Ms. Hernandez gives her mathematics class a 15-minute multiple-choice quiz each Friday covering the material that had been discussed in class that week. The options in the multiple-choice questions include the correct answer as well as incorrect answers that are common misconceptions and common arithmetic mistakes.

Ms. Hernandez counts the number of correct answers and determines the number of students making the same mistakes or making the same misconceptions. By using this testing strategy, Ms. Hernandez is demonstrating how to

A. use mathematics to model and solve problems in other disciplines.
B. develop a variety of assessments and scoring procedures that assess mathematical understanding and inform instruction strategies.
C. use manipulatives and technological tools.
D. provide instruction along a continuum from concrete to abstract

Answer and Rationale
COMPETENCY 021

21. Which of the following units is used to represent density?

 A. g
 B. mL
 C. g/mL
 D. cm³

Answer and Rationale

COMPETENCY 022

22. Which of the following is the next step after students develop a hypothesis?

 A. Design an experiment
 B. Develop a theory
 C. Analyze experimental data
 D. Draw conclusions

Answer and Rationale

COMPETENCY 023

23. Some power plants burn natural gas to produce electricity. Which THREE of the following are alternative sources of power that can be used to reduce the amount of carbon dioxide produced and emitted into the atmosphere during electrical power production?

 A. Coal power plant
 B. Hydropower plant
 C. Wind turbines
 D. Nuclear power plant

Answer and Rationale
COMPETENCY 024

24. Which of the following illustrates the concept of equilibrium?

A. Leaves burning
B. A ball rolling down a hill
C. Heat entering into an open refrigerator
D. A saturated sugar solution with some solid sugar present

Answer and Rationale

COMPETENCY 025

25. Of the following, which is a statement of Newton’s first law of motion?

A. Kinetic energy is conserved during the elastic collision of two objects.
B. An object at rest will remain at rest unless acted on by an external net force.
C. An object’s linear momentum is proportional to its mass and speed.
D. The acceleration of an object depends on the mass of the object and the net force acting on the object.

Answer and Rationale

COMPETENCY 026

26. Which of the following processes involves a pure solid changing directly into a gas?

A. Oxidation
B. Vaporization
C. Condensation
D. Sublimation

Answer and Rationale
COMPETENCY 027

27. Which of the following is an ionic compound?

A. KCl
B. CO₂
C. CH₄
D. NH₃

Answer and Rationale

COMPETENCY 028

28. Loudness is a characteristic of sound that is related to which of the following properties of a sound wave?

A. Frequency
B. Speed
C. Intensity
D. Wavelength

Answer and Rationale

COMPETENCY 030

29. Which of the following organisms have an exoskeleton and jointed appendages?

A. Frogs
B. Spiders
C. Alligators
D. Earthworms

Answer and Rationale
COMPETENCY 031

30. In a particular variety of plant, the allele for red flowers (W) is dominant and the allele for white flowers (w) is recessive. Which of the following is the genotype of plants with white flowers?

A. WW
B. Ww
C. ww
D. w

Answer and Rationale

COMPETENCY 032

31. The wing of a bat and the arm of a gorilla are best described as examples of which of the following?

A. Primary structures
B. Vestigial structures
C. Homologous structures
D. Analogous structures

Answer and Rationale

COMPETENCY 033

32. Of the following, which is the best example of homeostasis?

A. In humans, the enzyme salivary amylase catalyzes the digestion of some starches in the mouth.
B. Marine birds use salt glands to remove excess salt from the seawater they drink to maintain a balance between salt and water.
C. Spores are produced internally in mushrooms and then are dispersed externally.
D. When a blood vessel is damaged, blood that leaks out undergoes processes that result in a blood clot that stops blood loss.

Answer and Rationale
COMPETENCY 034

33. Which of the following is typically a secondary consumer in a food chain?

 A. Tree
 B. Deer
 C. Squirrel
 D. Fox

Answer and Rationale

COMPETENCY 035

34. Of the following, which describes an atoll?

 A. A sandy landform that extends out from a mainland coast
 B. A sandy landform that is parallel to a mainland coast
 C. A long narrow inlet with steep sides created by glacial erosion
 D. A ring-shaped coral reef that partially or completely encircles a lagoon

Answer and Rationale

COMPETENCY 036

35. Which of the following is a metamorphic rock?

 A. Slate
 B. Granite
 C. Basalt
 D. Sandstone

Answer and Rationale
COMPETENCY 037

36. If the relative humidity is 95% on a day when the air temperature is 85.0°F, which of the following is most likely closest to the dew point?

A. 95.0°F
B. 85.0°F
C. 84.0°F
D. 45.0°F

Answer and Rationale

COMPETENCY 038

37. Which of the following is a late stage in the life cycle of most low-mass stars?

A. Black hole
B. White dwarf
C. Red supergiant
D. Supernova

Answer and Rationale

COMPETENCY 039

38. The half-life of carbon-14 is 5,730 years. How much of the original quantity of carbon-14 in a sample remains after 22,920 years?

A. One-half
B. One-quarter
C. One-eighth
D. One-sixteenth

Answer and Rationale
COMPETENCY 040

39. Which of the following student statements is an example of a student misconception about science?

A. Positively charged ions have lost electrons and have an imbalance between positive and negative charges.
B. The boiling point is the highest possible temperature of a substance.
C. Even though an object is not moving, it has energy.
D. The Moon orbits Earth in approximately 27.32 days.

Answer and Rationale

COMPETENCY 042

40. A short written multiple-choice quiz given after the first section of a unit on chemical and physical properties of matter is an example of

A. a formative assessment.
B. a performance assessment
C. a summative assessment.
D. a self-assessment.

Answer and Rationale
Answer Key and Rationales

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>009</td>
<td>A, F</td>
<td>Options A and F are correct. Lines ℓ and m are parallel, so $\angle 6 \cong \angle 1$ because they are corresponding angles. Because they are vertical angles, $\angle 6 \cong \angle 7$. Options C and E are incorrect because if either $\angle 3$ or $\angle 5$ was congruent to $\angle 6$, then their opposite sides would be equal, and the triangle would be isosceles, a contradiction. Option B is incorrect because $\angle 2$ and $\angle 5$ are corresponding angles and therefore are congruent, and $\angle 5$ has been established as not being congruent to $\angle 6$. Option D is incorrect because as an exterior angle of the triangle, $\angle 4$ has a measure equal to the sum of $\angle 3$ and $\angle 6$ and therefore must be greater than either one of them individually.</td>
</tr>
<tr>
<td>2</td>
<td>001</td>
<td>C, D</td>
<td>Options C and D are correct because the approximation of π to five decimal places is 3.14159, and therefore $\frac{22}{7} = 3.142857 > \pi$ and $3.142 > \pi$. Options A and B are incorrect because $3 < \pi$ and $3.14 < \pi$.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>008</td>
<td>C</td>
<td>Option C is correct because the inequality $10 \leq C \leq 45$ is equivalent to $10 \leq \frac{5}{9}(F - 32) \leq 45$, which is equivalent to $\frac{9}{5}(10) + 32 \leq F \leq \frac{9}{5}(45) + 32$, or $50 \leq F \leq 113$. Option A is incorrect because it results from incorrectly solving the inequality $10 \leq \frac{5}{9}(F - 32) \leq 45$ by first adding 32 to all terms and then multiplying all the terms by $\frac{1}{5}$. Option B is incorrect because no calculations were performed; only the units were changed. Option D is incorrect because it results from incorrectly solving the inequality $10 \leq \frac{5}{9}(F - 32) \leq 45$ by first adding 32 to all terms and then multiplying all the terms by $\frac{9}{5}$.</td>
</tr>
<tr>
<td>4</td>
<td>018</td>
<td>A</td>
<td>Option A is correct because the activity asks the students to relate concrete data with abstract concepts. Option B is incorrect because students are not asked to use visual media. Option C is incorrect because the activity references statistics and is not about connections to other mathematical disciplines. Option D is incorrect because the activity does not reference current trends in mathematics education.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>004</td>
<td>D</td>
<td>Option D is correct because the zero product property states that $ab = 0$ implies that $a = 0$ or $b = 0$. Options A, B and C are incorrect because although the properties of 0 stated are correct, they are not applied in step 4.</td>
</tr>
<tr>
<td>6</td>
<td>003</td>
<td>D</td>
<td>Option D is correct because $(2^2)(3^2)(5^2)$ is a factorization of 900 where each of the factors is a prime number. Option A is incorrect because although $(4)(9)(25)$ is a factorization of 900, the factors are not prime numbers. Options B and C are incorrect because they are not factorizations of 900.</td>
</tr>
<tr>
<td>7</td>
<td>005</td>
<td>D</td>
<td>Option D is correct because the value of the car when purchased corresponds to $x = 0$, and the value of the car decreases by 900 for every unit increase of x. Options A and B are incorrect because the value of the functions increase by $11,300$ for every unit increase of x. Option C is incorrect because the value of this function increases by 900 for every unit increase of x.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>007</td>
<td>A</td>
<td>Option A is correct because the derivative of a function at a point is the instantaneous rate of change of the function at that point. Option B is incorrect because the second derivative gives information about the concavity of the graph of a function. Option C is incorrect because (\frac{f(t) - f(0)}{t}) is the slope of the line between ((0,0)) and ((t,f(t))). Option D is incorrect because (\int f(t),dt) is the indefinite integral of the function (f).</td>
</tr>
</tbody>
</table>

| 9 | 011 | C | **Option C is correct** because the length of each side of the new triangle is 1.5 times the length of the corresponding side of the original triangle. The perimeter of the original equilateral triangle is 24 centimeters, so the length of each side is \(24 \div 3 = 8 \) centimeters. The length of each side of the new triangle is \(8 \times 1.5 = 12 \) centimeters, and the perimeter of the new triangle is \(12 + 12 + 12 = 36 \). **Option A is incorrect** because the length of each side of the new triangle is 12. **Option B is incorrect** because \(16 = 24 \div 1.5 \) would be the perimeter of the new triangle if the equilateral triangle were dilated by a factor of \((1 \div 1.5) \). **Option D is incorrect** because \(108 = 1.5(24 + 24 + 24) \) would be the perimeter of the new triangle if each side of the equilateral triangle were length 24. |

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>012</td>
<td>C</td>
<td>Option C is correct. The median is calculated by ordering the values in list L from least to greatest and then selecting the middle value from the list. Since the number of values in the list is even, the two middle numbers are 77 and 81. The median is $\frac{77 + 81}{2} = 79$. The mode is the number that appears in list L most frequently, which is 81. The mean is calculated by adding all the values in the list and then dividing by the total number of values, which is 79. Therefore, in list L, the median has the same value as the mean. Option A is incorrect because the mean of 79 in list L does not equal the mode of 81 in list L. Option B is incorrect because the mean of 79 in list L is not greater than the mode of 81 in list L. Option D is incorrect because the mean of 79 in list L is equal to the median of 79 in list L.</td>
</tr>
<tr>
<td>11</td>
<td>013</td>
<td>A</td>
<td>Option A is correct. The probability of landing on 8 on a single spin is $\frac{1}{8}$, and because each spin is an independent event, the probability of landing on 8 on all three spins is the product $\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)$. Options B, C and D are incorrect because the events are independent.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>011</td>
<td>C</td>
<td>Option C is correct because if (f(x)) is reflected about the (y)-axis, then the new function (g(x)) is generated by finding (f(-x)). Following this condition, (y = 4(-x) - 1 = -4x - 1). Option A is incorrect because it is the same function and is not reflected. Option B is incorrect because (\frac{1}{4}) is the reciprocal of the slope, not the reflection. Option D is incorrect because (-\frac{1}{4}) is the slope of a line perpendicular to (f) and is not necessarily a reflection.</td>
</tr>
<tr>
<td>13</td>
<td>006</td>
<td>D</td>
<td>Option D is correct because the population can be modeled by an exponential growth function (P(t) = (A)\left(\frac{t}{2^h}\right)), where (A) is the initial population, (t) is the number of hours after the initial time, (h) is the time, in hours, it takes the population to double, and (P(t)) is the population after (t) hours. Using this general exponential model leads to (P(t) = 300(2)^\frac{t}{2}). Options A, B and C are incorrect because they do not model exponential growth.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>14</td>
<td>002</td>
<td>C</td>
<td>Option C is correct because the solutions of the equation can be found using the quadratic formula $$x = \frac{-1 \pm \sqrt{1^2 - 4(1)(2)}}{2(1)}$$ $$= \frac{-1 \pm \sqrt{-7}}{2}$$ $$= -\frac{1}{2} \pm \frac{\sqrt{7}}{2}i$$ which gives two complex solutions. Option A is incorrect because the equation has two complex solutions. Options B and D are incorrect because the equation does not have any real solution.</td>
</tr>
<tr>
<td>15</td>
<td>014</td>
<td>C</td>
<td>Option C is correct because $\frac{9}{100}$, or 9%, of the sample is taller than 6 feet; 9% of 1100 is 99, and therefore, 100 is the best estimate among the options provided. Options A, B and D are incorrect because they are wrong order of magnitude.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>015</td>
<td>B</td>
<td>Option B is correct because to determine how long it would take a student to walk from Nome, Alaska, to Houston, Texas, the students should make a variety of estimates and apply the estimates to a mathematical model. Option A is incorrect because the activity is not designed to use mathematical proofs. Option C is incorrect because the use of estimation is more important in this activity than symbolic mathematics. Option D is incorrect because manipulatives are not needed for the task.</td>
</tr>
<tr>
<td>17</td>
<td>010</td>
<td>C</td>
<td>Option C is correct because all equilateral triangles are similar. For similar triangles, there is a similar ratio of the sides and a similar ratio for the areas that is the square of the similar ratio of the sides. Since the ratio of the sides is 4:1, the ratio of the areas is 16:1, or 16 times greater. Option A is incorrect because the ratio of the sides is not equal to the ratio of the areas. Option B is incorrect because the similar ratio of the areas is not two times the ratio of the sides. Option D is incorrect because the ratio is 16:1, not 64:1.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>18</td>
<td>017</td>
<td>C</td>
<td>Option C is correct because the circle in the plane that passes through three noncollinear points can be found with compass and straightedge constructions. Options A and B are incorrect because these applications can be done with graphing calculators or graphing software. Option D is incorrect because the determination of prime numbers cannot be done with compass and straightedge constructions.</td>
</tr>
<tr>
<td>19</td>
<td>016</td>
<td>D</td>
<td>Option D is correct because the precise definition of prime numbers is critical to applications and uses of prime numbers. Option A is incorrect because multiple representations of mathematical concepts are not discussed. Option B is incorrect because no assessments were discussed or given with this activity. Option C is incorrect because careers and professions are not discussed.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>20</td>
<td>019</td>
<td>B</td>
<td>Option B is correct because by tracking common errors and misconceptions, the teacher can assess the level of mathematical understanding and address those errors through instruction. Option A is incorrect because the testing strategy may be used for any mathematical content, not just solving problems in other disciplines. Option C is incorrect because manipulatives may or may not be used in each weekly assessment. Option D is incorrect because the primary goal of the testing strategy is to identify errors and misconceptions.</td>
</tr>
<tr>
<td>21</td>
<td>021</td>
<td>C</td>
<td>Option C is correct because density is a measure of mass per unit volume and can be represented by g/mL, which is equivalent to g/cm³. Options A, B and D are incorrect because g is a unit of mass, and mL and cm³ are each a unit of volume.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>22</td>
<td>022</td>
<td>A</td>
<td>Option A is correct because after a hypothesis is developed, an experiment should be designed to test the hypothesis. Option B is incorrect because a theory is not developed until various experiments have been done that result in data that support a hypothesis. Options C and D are incorrect because analyzing data and drawing conclusions are done after the experiment is conducted.</td>
</tr>
<tr>
<td>23</td>
<td>023</td>
<td>B, C, D</td>
<td>Options B, C and D are correct because hydropower plants, wind turbines, and nuclear power plants do not directly produce and emit carbon dioxide during their operation and if they are used as an alternative to combustion-powered plants, will result in a reduction in the production and emission of carbon dioxide. Option A is incorrect because coal power plants produce carbon dioxide as a by-product of combustion.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>24</td>
<td>024</td>
<td>D</td>
<td>Option D is correct because in the saturated sugar solution the rate of sugar crystallizing is equal to the rate of sugar dissolving, thus achieving a balance. Option A is incorrect because as leaves burn, carbon combines with oxygen to form carbon dioxide that escapes into the atmosphere along with smoke particles. Option B is incorrect because a ball rolling down hill is not at equilibrium. Option C is incorrect because heat entering an open refrigerator is not an example of equilibrium.</td>
</tr>
<tr>
<td>25</td>
<td>025</td>
<td>B</td>
<td>Option B is correct because a statement of Newton’s first law of motion is that an object at rest will remain at rest unless acted on by an external net force. Option A is incorrect because although there is conservation of kinetic energy in an elastic collision, it is not a statement of Newton’s first law of motion. Option C is incorrect because while linear momentum is the product of the mass and velocity of an object, it is not a statement of Newton’s first law of motion. Option D is incorrect because it is a statement of Newton’s second law.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>26</td>
<td>026</td>
<td>D</td>
<td>Option D is correct because in the process of sublimation, a pure solid undergoes a phase transition to a gas. Option A is incorrect because oxidation is not a phase transition but is a chemical process. Option B is incorrect because vaporization is the phase transition in which a liquid becomes a gas. Option C is incorrect because condensation is the phase transition in which gas becomes a liquid.</td>
</tr>
<tr>
<td>27</td>
<td>027</td>
<td>A</td>
<td>Option A is correct because the compound KCl has ionic bonding between metallic K$^+$ ions and nonmetallic Cl$^-$ ions. Options B, C and D are incorrect because CO$_2$, CH$_4$, and NH$_3$ are covalently bonded molecules.</td>
</tr>
<tr>
<td>28</td>
<td>028</td>
<td>C</td>
<td>Option C is correct because loudness is a characteristic of sound that is related to the intensity of the sound wave. Options A, B and D are incorrect because loudness is not related to the frequency, speed, or wavelength of the sound wave.</td>
</tr>
<tr>
<td>29</td>
<td>030</td>
<td>B</td>
<td>Option B is correct because spiders are arthropods and have an exoskeleton and jointed appendages. Options A, C and D are incorrect because frogs and alligators are vertebrates that have an endoskeleton, and earthworms do not have a skeleton.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>30</td>
<td>031</td>
<td>C</td>
<td>Option C is correct because in complete dominance, only an individual with the genotype (ww) can have the phenotype of white flowers. Options A and B are incorrect because individuals with the genotype of (WW) or (Ww) will each have the phenotype of red flowers since (W) is the dominant allele. Option D is incorrect because each plant has two copies of the gene for flower color, so the genotype of white plants is (ww).</td>
</tr>
<tr>
<td>31</td>
<td>032</td>
<td>C</td>
<td>Option C is correct because in evolutionary biology a bat wing is homologous to the arm of a gorilla. Homologous structures are adapted to different purposes as a result of descent with modification from a common ancestor. Option A is incorrect because the term “primary structures” is not a term associated with the relationship between a bat wing and the arm of a gorilla. Option B is incorrect because a vestigial structure has lost much or all of the functions it had in its ancestors, such as the eyes of a mole, which are covered by a layer of skin and no longer function. Option D is incorrect because analogous structures, such as the wings of a bat and the wings of a moth, have similar functions in two different organisms, but were not present in a common ancestor and evolved separately.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>32</td>
<td>033</td>
<td>B</td>
<td>Option B is correct because homeostasis is a process that maintains the stability of internal conditions such as the maintenance of a balance between salt and water in a marine bird. Option A is incorrect because the chemical process involving salivary amylase is an example of a digestive process. Option C is incorrect because the production and dispersal of mushroom spores is an aspect of asexual reproduction. Option D is incorrect because the processes that result in blood clotting and a cessation of bleeding from a blood vessel is called hemostasis.</td>
</tr>
<tr>
<td>33</td>
<td>034</td>
<td>D</td>
<td>Option D is correct because a fox is a secondary consumer. Foxes eat animals such as squirrels that are primary consumers. Option A is incorrect because a tree is a primary producer. Primary producers are the organisms in an ecosystem that produce biomass from inorganic compounds. Options B and C are incorrect because deer and squirrels are primary consumers. Primary consumers eat primary producers.</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>34</td>
<td>035</td>
<td>D</td>
<td>Option D is correct because an atoll is a ring-shaped coral reef that partially or completely encircles a lagoon. Option A is incorrect because a spit is a sandy landform that extends out from a mainland. Option B is incorrect because a barrier island is a sandy landform that is parallel to a coastline. Option C is incorrect because a fjord is a long narrow inlet with steep sides that was created by glacial activity. Back to Question</td>
</tr>
<tr>
<td>35</td>
<td>036</td>
<td>A</td>
<td>Option A is correct because slate is a metamorphic rock. Options B and C are incorrect because granite and basalt are igneous rocks. Option D is incorrect because sandstone is a sedimentary rock. Back to Question</td>
</tr>
<tr>
<td>Question Number</td>
<td>Competency Number</td>
<td>Correct Answer</td>
<td>Rationales</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>36</td>
<td>037</td>
<td>C</td>
<td>Option C is correct because the dew point of this particular air sample must be slightly below 85.0°F, so the correct answer is 84.0°F. Relative humidity is the amount of water vapor in the air compared to the amount required for saturation, expressed as a percentage. The maximum amount of water vapor that can be in the air decreases with decreasing temperature. The dew point is the temperature to which an air sample would have to be cooled for saturation to occur (dew is likely to form at this temperature). Therefore, when the relative humidity is very high (such as 95%) the air is almost saturated and the temperature would only have to decrease a small amount to reach saturation (100% relative humidity). Option A is incorrect because if the air temperature were 95.0°F, the relative humidity would be lower than 95% and well above the dew point. Option B is incorrect because the relative humidity is only 95% at 85.0°F, and relative humidity is 100% at the dew point. Option D is incorrect because the air would become saturated (100% relative humidity) and therefore dew would start to form long before the temperature dropped to 45.0°F.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>038</td>
<td>B</td>
<td>Option B is correct because for most stars of low mass, white dwarf is a late stage in the life cycle of the star. Options A, C and D are incorrect because they are stages in the life cycle of a star with a very large mass.</td>
</tr>
</tbody>
</table>

Back to Question

| 38 | 039 | D | **Option D is correct** because 22,920 years is four half-lives (four times 5,730 years), and after four half-lives elapse, one-sixteenth of the original quantity of carbon-14 remains. During each half-life, half of the remaining carbon-14 radioactively decays. So after four half-lives, the amount of carbon-14 in the sample is equal to \((1/2)(1/2)(1/2)(1/2)\) times the original quantity of carbon-14 (one-sixteenth of the original quantity). **Options A, B, and C are incorrect** because they do not represent the correct quantity of carbon-14 remaining. |

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>040</td>
<td>B</td>
<td>Option B is correct because the student statement that the boiling point is the highest temperature possible of a substance is a misconception. After a substance undergoes a phase transition from liquid to gas at its boiling point, its temperature can increase above the boiling point if additional energy is absorbed by the substance. Option A is incorrect because the student statement that positively charged ions have lost electrons and have an imbalance between positive and negative charges is not a misconception, but is true based on current models of the atom. Option C is incorrect because the student statement that an object that is not moving still has energy is not a misconception; it is true. For example, an object that is not moving has potential energy based on its position relative to the ground due to gravitational forces, and it has potential energy based on the relative positions of the atoms in the material from which it is made. Option D is incorrect because the student statement that the Moon orbits Earth in approximately 27.32 days is not a misconception but is correct based on measurements of the Moon’s motion around Earth relative to distant stars.</td>
</tr>
</tbody>
</table>

Back to Question
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Competency Number</th>
<th>Correct Answer</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>042</td>
<td>A</td>
<td>Option A is correct because a formative assessment is used to monitor student progress and to inform both student and teacher of areas that need additional work. Option B is incorrect because a performance assessment involves assessing a student’s performance of a task, such as a lab activity, to assess how well the student understands the concepts he or she has learned. Option C is incorrect because a summative assessment occurs after completion of learning and assesses what has been learned and how well it has been learned. Option D is incorrect because a self-assessment involves the student evaluating his or her own learning.</td>
</tr>
</tbody>
</table>

Back to Question
Study Plan Sheet

<table>
<thead>
<tr>
<th>Content covered on test</th>
<th>How well do I know the content?</th>
<th>What material do I have for studying this content?</th>
<th>What material do I need for studying this content?</th>
<th>Where can I find the materials I need?</th>
<th>Dates planned for study of content</th>
<th>Date Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preparation Resources

The resources listed below may help you prepare for the TExES test in this field. These preparation resources have been identified by content experts in the field to provide up-to-date information that relates to the field in general. You may wish to use current issues or editions to obtain information on specific topics for study and review.

MATHEMATICS

JOURNALS

Mathematics Teacher, National Council of Teachers of Mathematics.
Mathematics Teaching in the Middle School, National Council of Teachers of Mathematics.

OTHER RESOURCES

ONLINE RESOURCES
American Mathematical Society — www.ams.org
Association for Women in Mathematics/Science — www.awm-math.org
Internet4Classrooms — www.internet4classrooms.com
The Mathematical Association of America — www.maa.org
National Association of Mathematicians — www.nam-math.org
National Council of Teachers of Mathematics/Science — www.nctm.org
Pearson Prentice Hall — www.phschool.com
Pearson Welcome K–12 AP Teacher! — www.pearsonhighered.com/educator/K-12_AP_teacher.page
Texas Council of Teachers of Mathematics/Science — www.tctmonline.org
SCIENCE

JOURNALS

Science and Children, National Science Teachers Association.

Science Scope, National Science Teachers Association.

Texas Science Teacher, Science Teachers Association of Texas.

The Science Teacher, National Science Teachers Association.

OTHER RESOURCES

ONLINE RESOURCES

American Association for the Advancement of Science — www.aaas.org
American Association of Physics Teachers — www.aapt.org
American Astronomical Society — www.aas.org
American Chemical Society — www.acs.org
American Institute of Biological Sciences — www.aibs.org
American Physical Society — www.aps.org
National Association of Biology Teachers — www.nabt.org
National Association of Geoscience Teachers — www.nagt.org
National Science Teachers Association — www.nsta.org
The Geological Society of America — www.geosociety.org